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Abstract. We present a microscopic analysis of the collective behaviour of the lead isotopes in the vicinity
of 208Pb. In this study, we rely on a coherent approach based on the Generator Coordinate Method
(GCM) including exact projection on N and Z numbers within a collective space generated by means of
the constrained Hartree-Fock BCS method. With the same Hamiltonian used in HF + BCS calculations,
we have performed a comprehensive study including monopole, quadrupole and octupole excitations as
well as pairing vibrations. We find that, for the considered nuclei, the collective modes which modify the
most the conclusions drawn from the mean-field theory are the octupole and pairing vibrations.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.60.-n Nuclear-structure models and methods
– 27.80.+w 190 ≤ A ≤ 219

1 Introduction

Mean-field methods have been extensively used to study
a wide range of nuclear properties. There exist now sev-
eral variants which, although relying on different physi-
cal approaches, lead to rather similar results. Among the
methods most extensively used in the last years, one can
mention those based on Skyrme (zero-range) [1,2] interac-
tions, or on the Gogny force (finite-range interaction) [3–
5], the density-functional approach [6] and the relativistic
mean-field method based on an effective Lagrangian [7,8].

One of the key ingredients in all these methods is the
way the nucleon-nucleon interaction is treated. Either a
density-functional or a relativistic Lagrangian is globally
adjusted to some classes of nuclei and/or nuclear matter
properties. Henceforth, it should be used without readjust-
ment for any specific problem relevant to this class of prop-
erties. Mean-field methods attempt to reproduce nuclear
many-body properties within a description which takes
into account the one-body density only. Expectedly, the
data accessible to these studies is mostly limited to that
corresponding to one-body operators, such as the shape
deformations or the radii. To that already large set one
can add the total binding energy for which the Hartree-
Fock (HF) or Hartree-Fock-Bogoliubov (HFB) minimiza-
tion principle is explicitly designed. In practice, other ob-
servables are sometimes also included in the fit of the func-
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tionals or Lagrangians. A typical example is the effective
nucleon mass which is related to the density of single-
particle levels at the Fermi surface. To obtain a density
similar to that deduced from the results of pickup and
stripping reactions, the effective mass of the interaction
should be close to the free nucleon mass. On the other
hand, it has been shown that RPA correlations, which
are the simplest type of correlations beyond HF, increase
the value of the effective mass [9]. To account for such
facts, two approaches have been utilized in non relativis-
tic studies as soon as the nuclear energy density approach
has been shown to be flexible enough to reproduce nuclear
properties with a good accuracy. In one of them, one tries
to define the functional so as to avoid a double counting of
the correlations. This implies that the choice of the effec-
tive parameters leaves room for the improvement expected
from a further inclusion of RPA correlations. For instance,
the mean-field value of the effective nucleon mass is ad-
justed to a value smaller than the bare mass so that RPA
correlations may enhance it to the experimental value. In
the past, this has been the most standard approach to de-
fine effective interactions used in the calculation of the en-
ergy functional. Another strategy consists in the construc-
tion of functionals which are in a sense “doubly” effective,
since they are expected to take into account the effect of
all correlations beyond mean field on a specified set of
nuclear properties. Then, for such properties, the mean-
field calculation should yield results directly comparable
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to data. Two successful examples of the latter strategy are
the interaction of Tondeur et al. [10], which reproduces
most known nuclear masses with high accuracy and that
of Brown [11], which yields single-particle level schemes to
be used in subsequent shell model calculations.

In this work, we consider a functional belonging to the
first family in order to investigate how collective modes
modify the mean-field properties. For this analysis, we rely
on the Generator Coordinate Method (GCM) taking into
account several collective variables. In the past, such an
approach has been shown to be suited for a description of
low-lying collective states related to the quadrupole [12]
or the octupole [13] degree of freedom. A study of the cou-
pling of the dipole and the octupole modes in 152Sm and
in the superdeformed band of 190Hg [14] has also demon-
strated the ability of the GCM to describe in a single
calculation the properties of the ground state, of the low-
lying collective states and of the giant dipole resonance.
This method seems therefore to be an appropriate tool to
study the effect of correlations beyond a mean-field ap-
proach on the ground-state properties of a nucleus. To
decrease the computational task, we have not coupled the
collective modes and have taken only one collective vari-
able at a time. A study of the redundancy between the
modes that we study is beyond the scope of this work.

As test case, we have selected five Pb isotopes around
the magic number N = 126. These nuclei are in principle
well described by mean-field theories. The evolution of the
two-neutron separation energy at a magic number is rep-
resentative of the shell gap. We will therefore determine
how much it is affected by different types of collective cor-
relations. Our aim is to be as systematic as possible within
the GCM and to investigate the effect of all collective nu-
clear shape degrees of freedom which are believed to be
important for these nuclei: the monopole, quadrupole and
octupole modes.

Moreover, our study also includes the pairing vibra-
tion mode. Indeed, as part of this work, we analyze the
validity of a commonly used treatment of pairing corre-
lations beyond the BCS theory. Since BCS correlations
in 208Pb vanish, one often attempts to describe them by
means of an approximate variation after projection on the
nucleon numbers. In the following, we test the validity
of the Lipkin-Nogami (LN) prescription [15–17] by per-
forming an exact projection of the BCS wave functions. A
further study of pairing vibrations also naturally provides
an alternative approximate variation after projection and
allows to test the quality of the LN prescription.

The organization of this work is as follows. In sect. 2,
we present the dynamical ingredients (Hamiltonian and
collective spaces) and recall the method while introducing
our notations. Section 3 discusses our results. In the last
section, we summarize the major conclusions and indicate
possible extensions of the present work and promising out-
looks.

2 Method

In this section, we briefly review the now well-established
non relativistic microscopic framework which leads to the
results on lead isotopes presented in sect. 3. It provides
a natural setup for a treatment of i) the mean-field prop-
erties by means of standard HF + BCS or HFB methods
with effective Hamiltonians and ii) the collective dynamics
of any amplitude by means of the GCM.

2.1 The effective Hamiltonian and the mean-field
equations

Over the last quarter of century, it has been acknowledged
that the separation of the nuclear binding energy at the
mean-field level in Hartree-Fock and pairing components,
in the spirit of the energy density approach, provides a
fruitful starting point for an investigation of the static
and collective properties of nuclei. Without requiring com-
pletely consistency, since the Hartree-Fock and pairing
fields remain coupled through the one-body density ma-
trix, this approach deviates from the strict HF + BCS
theory as it can be performed with the Gogny [3] or
SkP [18] interactions. Still, in nuclear physics, the energy
density approach is often formulated in a way which pre-
serves contact with the notion of effective force. Then, as
it will be the case here, two interactions are used; one
in the particle-hole (Hartree-Fock) channel and one in
the particle-particle (pairing) channel. The introduction
of these two effective forces yields additional flexibility in
the phenomenological description of nuclear properties.

Historically, the structure of the particle-hole inter-
action, which in heavy nuclei accounts for more than
99% of the binding energy, has been investigated first.
In the present work, we use one of the latest versions of
the well-established line of Skyrme interactions: the SLy4
parametrization [19] designed to describe properties of nu-
clei (light and heavy) near the stability line or in the
neutron-rich region up to the drip line with a similar ac-
curacy. Here, we are concerned with stable and long-lived
lead isotopes. The quality of SLy4 for such non exotic nu-
clei has been tested on numerous examples [19,20,2,21].
The force which acts in the pairing channel and defines the
corresponding terms in the energy density is taken from
refs. [22,20]. It is a zero-range interaction with a depen-
dence on the nucleon space density. This dependence en-
sures that the particle-particle two-body matrix elements
are sensitive to the behavior of the single-particle orbitals
mostly located at the surface of the nucleus. This interac-
tion has been tested on physical issues sensitive to pairing
properties, such as the evolution of moments of inertia
in extended rotational bands, as have been observed for
instance in superdeformed [22] and superheavy [23] nuclei.

Along a series of isotopes or isotones, as either N or
Z approaches a magic value, the mean-field method pre-
dicts a sudden collapse of pairing. It is now established
that the magnitude of this transition overemphasizes the
lowering of pairing correlations which must be expected
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when the single-particle density at the Fermi surface de-
creases significantly. Indeed, even in magic nuclei when
the mean value of the order parameter vanishes, it is ex-
pected that fluctuations of this order parameter (in phase
and magnitude) should still influence nuclear properties.
The importance of this so-called dynamical pairing (as op-
posed to static pairing in situations when the HF + BCS
and HF solutions differ from each other) is one of the
questions that we investigate below within the GCM for-
malism. Lipkin and Nogami have proposed a prescription
which attempts to correct the mean field for the effects
of the phase fluctuations of the order parameter [15–17].
This still not well-understood prescription has neverthe-
less been shown to lead to global improvement (over the
mean-field theory) for the description of nuclear proper-
ties related to pairing. We will therefore also present re-
sults obtained with the Lipkin-Nogami prescription which
is also sometimes presented as an approximation to the
variation after projection method (VAP).

To conclude this section, let us mention a techni-
cal point: when pairing correlations are present, whether
at the static level (HF + BCS) or because the Lipkin-
Nogami prescription has been implemented, we have taken
care that no orbital of the continuum is occupied in the
HF + BCS wave function. In practice, this is achieved by
means of a cutoff which excludes all orbitals whose single-
particle energy is 5 MeV above the Fermi energy from the
active pairing space.

2.2 The construction of the collective spaces

In this work, the set of collective wave functions {|Φ(q)〉}
are determined by self-consistent methods (q denotes the
value of the collective variable of interest). For the modes
associated with isoscalar shape vibrations (monopole, qua-
drupole, octupole), these spaces are obtained by con-
strained HF + BCS calculations with the appropriate
one-body operator as listed in table 1 and q is the ex-
pectation value of the multipole moment operator q =
〈Φ(q)|Qjm|Φ(q)〉.

For the vibrations in the pairing space, the collective
coordinate must be related to some global (complex) pair-
ing gap. Since, as discussed in subsect. 2.3, the fluctuations
associated with the phase of the gap are taken into account
by an exact projection after the HF + BCS variation,
there only remains to describe the fluctuations of the gap
magnitude. To build the associated collective space, there
is no unique prescription. For instance, one may consider
generating the space by means of HF + BCS calculations
with a constraint on the fluctuations of the neutron and
proton numbers (i.e. the operators ∆N̂2

µ , µ = n, p) [24].
In order to escape the technical difficulties associ-

ated with the two-body nature of this operator, we have
adopted a second method. We construct the space by
means of non constrained HF + BCS calculations using
the same functional (with the SLy4 parametrization) for
the mean-field part and replacing the pairing functional by
that associated with an auxiliary Hamiltonian depending

Table 1. Constraining operators used to construct the collec-
tive spaces associated with the lowest isoscalar nuclear shape
vibrations. The quantities ri, θi and ϕi refer to the spheri-
cal coordinates of the nucleon i in an intrinsic reference frame
whose origin is at the nucleus center of mass. The Ylm are the
standard spherical harmonics.

Vibration Operator

Monopole Q00 ∝ ∑
i r2

i

Quadrupole Q2m ∝ ∑
i r2

i Y2m(θi, ϕi) , m = 0,±2
Octupole Q30 ∝ ∑

i r2
i Y30(θi, ϕi)

on two real gaps parameters, ∆n and ∆p:

ĤP (∆n, ∆p) =
∆n

2

N∑
µ=1

a†
nµa†

nµ̄ +
∆p

2

Z∑
µ=1

a†
pµa†

pµ̄ + c.c. ,

(1)

where a†
τµ is the creation operator of the nucleon of isospin

τ in the individual state µ and where µ̄ denotes the time
reversed orbital. The variation of the corresponding total
functionals generates a set of BCS states {|Φ(∆n,∆p)〉}.
Once this collective space has been determined, all further
calculations (expectation values and GCM matrix element
calculations (see subsect. 2.3)) are performed with the
Hamiltonian described in subsect. 2.1. This method has
already been used in ref. [25] to investigate the influence
of dynamical pairing on tunneling probabilities between
the superdeformed and normal wells in 192Hg.

The GCM method involves a non orthonormal col-
lective basis. The two prescriptions for constructing the
pairing collective space sketched above should therefore
lead to similar results (collective energy and wave func-
tions) once the bases are large enough. In addition, the
GCM method does not explicitly depend on which col-
lective coordinates have been selected to span the total
collective space. As long as the mapping is one to one,
rather than by (∆n,∆p), we may as well choose to plot
the GCM collective properties in terms of the coordinates
(〈∆N̂2

n〉, 〈∆N̂2
p 〉), where 〈Â〉 denotes the expectation value

of the operator Â in the state |Φ(∆n,∆p)〉 (or by any other
set of coordinates).

2.3 The projection and the collective dynamics

The Lipkin-Nogami prescription determines a BCS wave
function which, in priciple, takes into account the pairing
fluctations associated with the phase φ of the pairing. This
wave function can be used directly to evaluate the expec-
tation value of any operator as proposed in the original
articles of Lipkin and Nogami. In this work, such values
will be refered to as LN. One can also consider that this
BCS state is an approximation of the exact VAP state.
In order to test the validity of this assumption, one must
then extract from the LN-BCS state its component with
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correct (i.e. N0) particle number by means of a projec-
tion P̂N0 . Henceforth, the results associated with such a
two-step approach will be labeled LN (proj.).

The projection

P̂N0 =
1
π

∫ π
2

−π
2

dφ eiφ(N̂−N0) (2)

involves an integral over φ with the weight factor e−iφN0 .
From the mean-field wave functions {|Φ(q)〉} associated
with the value q of the collective variable, we build the
states

|ΦN0(q)〉 = P̂N0 |Φ(q)〉 , (3)

which form the non orthogonal projected collective basis
{|ΦN0(q)〉}. The expectation value E(q) of the Hamiltonian
in this basis is the projected deformation energy curve:

E(q) =
〈ΦN0(q)|Ĥ|ΦN0(q)〉
〈ΦN0(q)|ΦN0(q)〉

=
〈Φ(q)|ĤP̂N0 |Φ(q)〉
〈Φ(q)|P̂N0 |Φ(q)〉 . (4)

Several such curves are discussed in sect. 3. The value at
the minima of E(q) yields an energy corresponding to a re-
stricted VAP (a variation limited to the subspace spanned
by the collective variable q). The quality of this upper
bound to the VAP energy depends on the relevance of the
collective space for dynamical pairing correlations.

In a next step, we consider a more general N -body
wave function defined as a linear superposition of pro-
jected HF + BCS states with an unknown weight function
fj(q):

|Ψj〉 =
∫

dq fj(q) |ΦN0(q)〉 . (5)

In this definition, the label j recalls that several states
|Ψj〉 are obtained corresponding to the correlated ground
state and to the collective excited states. Within the GCM
method, the function fj is determined by a variation of the
total energy Ej :

Ej =
〈Ψj |Ĥ|Ψj〉
〈Ψj |Ψj〉 , (6)

with respect to the function f∗
j (q). This leads to the Hill-

Wheeler equations [26]. When particle number projection
is imposed on each basis state, the kernels I, N and H of
the integral operators entering this equation are given by

 I(q′, q)

N (q′, q)
H(q′, q)


=

1
π

∫ π
2

−π
2

dφ e−iφN0〈Φ(q′)|

 1̂

N̂

Ĥ


eiφN̂ |Φ(q)〉 .

(7)

The evaluation of these (q′, q)-dependent kernels is the
most time-consuming numerical part (in fact, there are
four of them, since neutron and proton numbers have to
be conserved separately). They involve a double integral
(one for N and one for Z) of matrix elements of one-body

and two-body operators between all possible states of the
collective basis {|Φ(q)〉}. The formulae useful for the calcu-
lation of the sets of matrix elements are given in ref. [27].
Other kernels involving multipole moment operators asso-
ciated with the various deformations are also needed for
the computation of the shape properties of the collective
GCM states. The reference just quoted also recalls how
the solution of the Hill-Wheeler equation can be reduced
to the diagonalization of an Hermitian matrix computed
from the kernels I, N and H.

The functions fj ’s do not form an orthogonal set. Using
the overlap kernel, one can define the functions gj ’s as

gj(q) = (I1/2 · fj)(q) , (8)

which are orthonormal and can be interpreted as collec-
tive functions in the usual sense. In eq. (8), the notation
I1/2 stands for the integral operator whose square is equal
to the integral operator with kernel I(q′, q). In the next
section, we present some functions gj associated with the
quadrupole and octupole vibrations.

In the case of quadrupole vibrations, the GCM is
solved separately in each representation of the permu-
tation group of the three intrinsic axes. As discussed in
ref. [28,29], the two independent representations of this
group have different angular-momentum parity (Jπ) con-
tents: in the fully symmetric one, the major component
of the collective wave function corresponds to 0+ spin
and parity, while, in the two-dimensional representation,
the collective N -body wave function is predominantly of
the 2+ type. Very recently, we have constructed an ex-
act angular-momentum projection code [30] and we have
quantitatively checked the quality of this approximate
spin projection. We have found that it is accurate when-
ever the extension of the collective function g does not
extend beyond the value 〈Q20〉 = 4 b of the quadrupole
deformation. Since the influence of the spherical magic
proton number Z = 82 insures that g is non zero only in
the close vicinity of the 〈Q20〉 = 0 point, this is the case
for the g functions of the lead isotopes.

Although our HF + BCS and GCM codes allow triax-
ial deformations, the results presented below are based on
collective bases including only prolate and oblate states.
This is justified by the small extension of the collective
wave functions. Nonetheless, all the GCM calculations
presented below mix states located on the six semi-axes
corresponding to the triaxiality angles γ = 0, ±60◦, ±120◦
and 180◦. We have tested the quality of this approxima-
tion by performing full triaxial calculations on a few cases
and we have checked that our conclusions do not depend
on this degree of freedom.

The mean-field (and Lipkin-Nogami) wave functions
spanning the collective spaces are constructed from an en-
ergy density functional whose particle-hole and particle-
particle components are defined by means of two distinct
effective density-dependent two-body forces. For the sake
of simplicity, we have presented the standard GCM for-
malism with a single effective Hamiltonian. In practice, we
have adapted the GCM to the choice made in subsect. 2.1
and defined a generalized energy density to be used in
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the computation of the energy kernel H(q′, q) given by
eq. (7). This involves both a prescription for handling the
density dependence of the force and an extension of the
energy density formalism to the non diagonal matrix ele-
ments which appear in the integral in eq. (7). We use the
method described in ref. [28] (for an alternative choice, see
ref. [31], for instance). The formulae for the two terms of
the extended energy density are given in ref. [28] and the
implications and potential problems associated with this
formulation are discussed in refs. [32,24].

3 Results

We consider successively, the influence of correlations on
the ground-state properties and the collective excitations
of five lead isotopes.

3.1 Ground-state correlation energies

In fig. 1, for each of the isotopes 204Pb, 206Pb, 208Pb, 210Pb
and 212Pb, we have plotted the difference between the
binding energies of the ground state calculated by GCM
on several collective spaces and a BCS reference value. In
practice, for the five nuclei, the proton part of this refer-
ence wave function reduces to a Slater (HF) determinant.
This is also true for the neutron component in 208Pb. In
addition, in fig. 1, we have plotted the difference between
the same reference and the binding energies calculated by
means of the Lipkin-Nogami method with and without a
projection on the neutron and proton numbers.

The ordinate scale of the figure shows that, irrespective
of the nature of the collective vibration, the correction to
the total binding energy is small (about 3 MeV). Consid-
ering the effective character of the two-body interactions
defining the energy density, this is a satisfactory result. As
we discussed in the introduction, one can consider either
that first-order effects of correlations can be effectively in-
cluded into the parametrization of the force, or conversely
that the presently available forces have to be readjusted so
as to underbind slightly with respect to data. This would
leave room for the small corrections associated with corre-
lations to be computed on top of the mean-field solution,
as we have done. In ref. [33], much larger values of corre-
lation energies have been found. However, as was pointed
out in this reference, the method based on a sum rule ap-
proximation to the RPA suffers from an ambiguity related
to the double counting in RPA formulas for the correlation
energies. The GCM method is free from such a problem.

The relative magnitudes of the correlations tell about
the nuclear sensitivity to various collective modes. For lead
isotopes, the octupole mode is the most efficient among
the three nuclear shape vibrations analyzed in this work.
One also notes that even for nuclei close to N and Z magic
shell closures, pairing vibrations generate the largest cor-
rection.

The LN and even more the the LN projected curves
show a larger effect for the doubly magic nucleus 208Pb.
For the latter curve, the difference with BCS increases

204 206 208 210 212
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∆
E
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L.N. 
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Q00
Q20
Q30
Pair.

Fig. 1. Differences between the calculated total binding en-
ergy of the ground state of the five lead isotopes and a BCS
reference. The labels Qi0, i = 0, 2, 3 refer to GCM calculations
taking into account the different types of shape collective exci-
tations reported in table 1, while “Pair.” stands for the pairing
vibrations. Except for the curves BCS and LN, all results in-
volve an exact projection on N and Z.

from about 0.65 MeV at 204Pb and 212Pb to 1.4 MeV
at 208Pb. A possible interpretation is that the LN pre-
scription, which is designed to correct for vanishing pair-
ing fluctuations in the HF + BCS solution, is more ef-
fective in 208Pb when the single-particle energy gap at
the Fermi surface is larger. With respect to the second
curve (LN), the monopole, and octupole vibrations intro-
duce an additional lowering of the energy whith an almost
N -independent value equal to 0.2 MeV and 1.4 MeV, re-
spectively. By contrast, the curve associated with pairing
vibrations shows an overall decrease versus N of the bind-
ing energy correlations: over five isotopes it is reduced by
about 0.6 MeV.

When the LN prescription does not yield a good ap-
proximation of the binding energy of the particle projected
VAP solution, one could hope it to be a practical method
to construct a BCS state close to the VAP intrinsic state.
Then, a projection of this BCS wave function should give
almost the same energy as a VAP calculation. Our re-
sults show that the validity of this property of the LN
prescription is at least nucleus dependent. The minimum
of the energy surface obtained with the projected BCS
states spanning the pairing collective space provides an
upper bound of the VAP energy. From the results given
in table 2, it is seen that for the lighter lead isotopes,
it is more than 1 MeV below the energy associated with
the projected Lipkin-Nogami state. The same table shows
that the lowest binding energies correspond to projected
BCS states with particle number fluctuations larger than
those predicted by the LN prescription. For 208Pb and iso-
topes above, the differences between the projected LN and
approximate VAP solutions are smaller.
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Table 2. Neutron and proton particle number fluctuations of
the BCS states associated with the Lipkin-Nogami solution
and the minimum of the variational space constructed for the
study of pairing vibrations (see text). The quantity ∆E give
the difference between the energy of the latter state and the
LN state after particle number projection has been effected (i.e.
LN proj.).

A Lipkin-Nogami Variat. minimum ∆E(√
〈∆N̂2〉,

√
〈∆Ẑ2〉

) (√
〈∆N̂2〉,

√
〈∆Ẑ2〉

)
(MeV)

204 ( 2.54, 1.14 ) ( 2.90, 1.61 ) −1.51
206 ( 1.85, 1.17 ) ( 2.60, 1.95 ) −1.36
208 ( 1.36, 1.17 ) ( 1.92, 1.12 ) −0.21
210 ( 1.92, 1.17 ) ( 2.37, 1.13 ) −0.84
212 ( 2.59, 1.17 ) ( 2.58, 1.50 ) −0.28

206 208 210 212

A

8
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16

S
2n

 (
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eV
)

Exp.
BCS
L.N. proj.
Pair.

Fig. 2. Comparison between the experimental two-neutron
separation energies of the lead isotopes and the values cal-
culated within the BCS, projected LN and GCM methods. In
the latter case, the collective space allows fluctuations of the
gap parameter.

The discontinuity of the two-neutron separation energy
S2n, at a shell closure predicted by mean-field methods, is
often larger than found experimetally. This effect can be
seen in fig. 2. The magnitude of the drop of the BCS S2n

value between 208Pb and 210Pb exceeds data by approx-
imately 1.8 MeV. Although not shown in the figure, we
have checked that the differences between the BCS and
experimental S2n’s are not larger than 0.2 MeV for mass
number A smaller than 204. Therefore, the larger discrep-
ancy at A = 208 cannot be ascribed to the asymmetry of
the effective force SLy4 and suggests a deficiency of the
HF + BCS method for magic or near-magic nuclei. This
assumption is confirmed by the fact that the S2n’s, cal-
culated with the GCM on a collective space, allowing the
fluctuations of the pairing gap, leads to an improvement
by about 0.6 MeV (i.e. 33%). By contrast, the Lipkin-
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Fig. 3. Quadrupole deformation energy curves of 208Pb calcu-
lated with the Lipkin-Nogami state without (empty circles) or
with exact projection (solid circles) on the neutron and pro-
ton particle number. In the latter case, the curve in the sub-
space containing the 0+ component of the deformed function
is also given (solid squares). The solid straight segments give
the GCM collective energy in this latter subspace, while the
dotted segments give the energy in the subspace containing the
2+ components of the GCM collective functions.

Nogami prescription does not improve the mean-field re-
sults although it is supposed to approximately take into
account the effect of these pairing vibrations. For A = 206
and 212, the pair-vibration results are slightly deterio-
rated, but only by 0.2 to 0.3 MeV. We have not plotted
the curves with the energies resulting from the GCM as-
sociated with shape vibrations. Indeed, they are not much
different from the LN curve.

3.2 Collective functions and excitation spectrum

The Z = 82 and N = 126 magic numbers have a definite
influence on the individual and collective properties of the
five isotopes investigated in this work. They strongly favor
a mean-field solution corresponding to a HF (no pairing)
spherical wave function. The Lipkin-Nogami prescription,
which transforms the HF states into HF + BCS ones by
enforcing a smooth decrease of the occupation probabili-
ties from the hole to the particle states, does not modify
substantially the deformation properties of the collective
energy surfaces. As it can be seen in fig. 3, the LN energy
curves of 208Pb, with and without exact particle number
projection, exhibit a well-marked minimum at the spher-
ical point. The curves are very similar, the main effect of
the projection being a downward shift by about 0.5 MeV.
When an approximate angular-momentum projection on
the 0+ state is performed, the bottom of the well is flat-
tened over an extension of ±4 b. Qualitatively, such an
effect is expected on general grounds. The LN wave func-
tion at the spherical point is a pure 0+ state and is un-
affected by projection while a deformed mean-field wave
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Fig. 4. GCM collective functions associated with quadrupole
energy deformation of 208Pb. The solid losange gives the wave
function of the lowest-energy state in the subspace containing
the 0+ component of the total wave function, while the empty
losanges gives the same information for the subspace with the
2+ components.

function is a mixture of different spin components. The
energy of the 0+ component is lower than that of all other
spins and therefore than that of the deformed HF + BCS
wave function.

The GCM energies of the lowest collective quadrupole
(approximate) 0+ and 2+ states of 208Pb are also plotted
in fig. 3. The first excited state is a 2+. A comparison with
the GCM monopole calculation shows that the lowest 0+

collective state in the spectrum of 208Pb is the one shown
in fig. 3, the energy of the first excited monopole GCM
state being at 13.4 MeV. This latter value, which does
not vary with N over the five isotope series, agrees with
monopole giant resonance data [34,35]. This nice result is
related to the nuclear matter incompressibility of the SLy4
force, 220 MeV, a value which is known to be coherent
with experiment [36–38].

Figure 4 displays the GCM probabilities (i.e. |g|2,
where g(q) is defined by eq. (8)) for the first 0+ and 2+

states. The former is peaked at the spherical point. Its
width (≈ 4 b) corresponds to the quadrupole extension
of the bottom of the angular-momentum projected energy
curve shown in fig. 3. The collective probability distribu-
tion of the first 2+ GCM state displays a node at Q = 0. Its
extension is almost symmetric on the prolate and oblate
sides with a slight preference for the oblate deformation.

Four octupole deformation related energy curves for
208Pb are plotted in fig. 5 against positive expectation val-
ues of the constraining operator Q30 (see table 1). Since
this operator is parity negative, the negative abscissae part
of each curve can be deduced by symmetry with respect
to the ordinate axis. The LN and LN proj. curves display
a minimum at the spherical point 〈Q30〉 = 0. The pro-
jection merely increases the binding energy by 0.6 MeV.
An additional projection of the wave function on the total
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Fig. 5. Octupole energy deformation energy curves calculated
with the Lipkin-Nogami state, without (solid circles) or with
exact projection (empty circles) on the particle number. In the
latter case, the curve in the subspace containing the positive-
(empty triangles) and negative-parity (solid triangles) compo-
nents of the deformed function is also given. The solid (respec-
tively dotted) segments give the GCM collective energy in the
positive- (respectively negative) parity subspace of the GCM
collective functions.

positive- (respectively negative) parity separates the sub-
space which contains the 0+ (respectively the 3−) com-
ponent of the LN particle projected state. The LN and
LN proj. curves only differ significantly for small values
of 〈Q30〉 (< 2.103 fm3), namely as long as the overlap
between the LN particle-projected wave function and its
parity reversed is non zero. The positive-parity curve has
a minimum for 〈Q30〉 ≈ 103 fm3. Below, we will see that
this number provides a measure of the octupole fluctu-
ations in the 0+ GCM state. We recall that symmetry
garantees that the average value of 〈Q30〉 vanishes exactly
for all GCM states and, in addition, that the negative-
parity projected energy curve diverges at 〈Q30〉 = 0.

The GCM energies given in fig. 5 display an alternat-
ing sequence of positive- and negative-parity states. The
first octupole GCM excited state should correspond to
the lowest experimental 3−. Its probability distribution
(|g(q)|2) and that of the 0+ are plotted in fig. 6. They
give an information on the magnitude of the fluctuations
in the corresponding collective state. Returning to fig. 5,
one checks that each of these two wave functions display
the features expected for the quantum ground state in the
projected Lipkin-Nogami curve with the associated parity.

Up to now, the discussion in this subsection which cen-
tered on deformation energy curves and collective proba-
bility distributions has been concerned only with the dou-
bly magic nucleus 208Pb. The same curves calculated for
the four other isotopes are qualitatively similar, while they
yield significantly different collective energy spectra. Al-
though one can discern evolutions of the energy curves
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Fig. 6. Collective wave function of the lowest-energy state
with a given parity associated with the octupole deformation
of 208Pb . The empty (respectively solid) triangles gives the
ground-state function in the subspace containing the positive-
(respectively negative) parity component of the wave function.

versus N which are at the origin of the differences found
in the GCM spectra, they turn out to be neither spectac-
ular nor linked to any specific part of the collective space.
For this reason, we chose not to plot them; they only dis-
play a smooth modification of the same global pattern
along the isotope series.

In fig. 7, the collective GCM spectra for the three first
excited states (0+ and 2+ quadrupole, 3− octupole) are
given. Qualitatively, the overall pattern of data is well
reproduced. The positive-parity levels are pushed to high
energy as one crosses N = 126. As a consequence, the low-
est collective state in 208Pb is a 3−. As one moves away
from the shell closure, the collective spectrum returns to
the usual midshell pattern with the 2+ state being the
lowest. However, the collective states whether quadrupole
(0+ and 2+) or octupole are found by the GCM at ener-
gies between 1.5 to 2 larger than observed. Although the
formalism of the GCM does not distinguish potential from
collective inertia effects, if we were to adopt the concepts
of the standard collective model to analyze our discrep-
ancy with data, we could say that the results are consistent
with the calculated moments of inertia of the low-energy
shape vibrations being twice too small. In the next sec-
tion, based on the experience derived from refs. [39,40]
and from the existence of significant dynamical pairing ef-
fects evidenced by the results discussed in subsect. 3.1, we
put forward possible explanation for the GCM results.

With the Skyrme interaction SLy4, the quadrupole
collective transition matrix element 208Pb B(E2) ↑=
7.1 W.u. is close to the data (8 W.u.). The agreement is as
good for the octupole transition, since we find B(E3) ↑=
18.7 W.u. as compared to the experimental value equal to
32 W.u. [34,41,42,35]. We note, however, that these re-
sults are very sensitive to the interaction, since a similar
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Fig. 7. Evolution of the lowest excited collective states of five
lead isotopes near the magic nucles 208Pb. The figure compares
data with results of GCM including an exact projection on
particle (N and Z) numbers and an approximate projection
on angular momentum.

calculation with the SGII interaction yields 14 W.u. and
58 W.u., respectively.

4 Conclusions and perspectives

We have performed an analysis of the collective correla-
tions and modes of excitations in the vicinity of the magic
nucleus 208Pb. One of the characteristics of this work is
an attempt to maximize the coherence of the description
of the mean-field and collective effects for any amplitude.
This is done by means of the GCM solved in collective
bases. Depending on the type of collectivity, the GCM
bases are obtained from constrained calculations (shape
vibration) or derived from a set of auxiliary Hamiltonians
(pairing vibrations). Another element of consistency is the
use of the same effective particle-hole (p-h) and particle-
particle (p-p) interactions in the complete sequence of cal-
culations. These two forces had been determined in ear-
lier analyses of ground-state and high-spin properties by
means of mean-field methods.

We find that correlation effects on the total binding
energies are small. A posteriori, this result justifies the
perturbative-like calculation of such correlations on top
of the mean-field solution as done in the present work. It
also supports attempts at the definition of a force to be
used exclusively in mean-field calculations and designed to
effectively incorporate the small effect of correlations [10,
11]. The latter type of force is a practical tool for the
extensive nuclear-mass tabulations required for a global
analysis of astrophysical nucleosynthesis.

Furthermore, we have found that pairing vibrations
induce a softening of the rapid variation of the S2N curves
at the crossing of the magic shell N = 126. Such accidents
of the nuclear mass chart have a significant influence on
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the understanding of nuclear abundance peaks resulting
from high neutron fluxes in stellar events such as class II
supernovae explosions. A check of the persistence of this
effect at the points where the r-process path crosses the
Z = 82 magic line (on the N -rich side) appears therefore
desirable.

Our work also provides an illustration of the validity of
the Lipkin-Nogami prescription. The LN method should
give good approximations of both the VAP wave function
and energy. More restrictively, it is considered that even
when the LN energy does not reproduce well the VAP
energy, an exact projection performed on the LN wave
function does so [43]. This implies that VAP is well ap-
proximated by a projection after the solution of the LN
equations. Our calculations show the limitations of these
two assumptions. We find that even after projection the
discrepancy on the binding energy is nucleus dependent
and can be larger than 1.0 MeV. Our calculation pro-
vides only a lower bound of this discrepancy, since the
variational space used in the present work only covers a
fraction of the space available to a full VAP calculation.

We find that, for the five lead isotopes, the GCM col-
lective vibrations associated with our variational spaces
only generate small fluctuations around the spherical
shape and do not modify significantly the expectation
values of multipole moments. The behaviour of the low-
energy collective spectrum is qualitatively correct. In par-
ticular the relative positions of the 0+, 2+ and 3− states
along the isotope sequence is well reproduced. We also find
a reasonable agreement on electromagnetic transition ma-
trix elements. However, the energy scale of our spectrum is
too large by a factor between 1.5 and 2 compared to data.
The reason for this discrepancy is not yet clear. This is
all the more disconcerting that RPA calculations on the
Hartree-Fock solution using the same interaction provide
a much better agreement with the low-energy collective
spectrum of 208Pb [44]. For this nucleus, we have addi-
tionally performed a GCM calculation of quadrupole and
octupole vibrations using the SGII interaction for which
RPA calculations are also available [45]. We find a similar
pattern of fair agreement on transition matrix elements
and discrepancy on collective spectrum energies. Rather
similar conclusion were obtained by Egido et al. [46] who
used the Bhor collective Hamiltonian approximation of
the GCM with the Gogny interaction to study octupole
correlations in Pb isotopes.

From these results, some directions for further work
can be outlined. First, it appears useful to extend the cal-
culation to other regions of the mass table to test the
importance of pairing vibrations at shell closure. In par-
ticular one should consider other proton magic numbers
with a focus on the neutron-rich side at places of interest
for the r-process. Second, one sould extend the formal-
ism with a coupling between the vibrational modes which
have been detected to be especially active. For the lead
isotopes, the first such investigation should be devoted to
a coupled calculation of pairing and octupole vibrations.

Another point which needs clarification is the discrep-
ancy on the low-energy collective spectrum density. The

problem does not seem related to the interaction, since
RPA provides a rather good agreement with data. We note
also that, with the same forces, GCM and RPA results on
giant resonances agree together (and also with data). A
first reason for the differences on low-energy collectivity
may be due to the use of a GCM basis of wave functions
including dynamical pairing while RPA is performed on a
Hartree-Fock solution.

A discussion of this problem can be found in [39,40].
Indeed, in cranking-type calculations, pairing reduces col-
lective mass parameters and leads to a decompression of
the spectrum. In such a case, one would have to reconsider
which fraction of the pairing must be assigned to static
(i.e. BCS or HFB) or dynamic (fluctuations of the magni-
tude of pairing gap) correlations. Another source for the
different GCM and RPA results may be due to the defini-
tion of the GCM collective spaces. To study shape vibra-
tions, we have used a collective basis generated by self-
consistent calculations with constraining operators pro-
portional to multipole moments. A description of the low-
energy mode could require other radial form factors more
peaked at the nuclear surface than the present rn form
factors. The RPA transition form factors may provide in-
dications for more appropriate constraining operators.

As a conclusion, the present work has demonstrated
the interest of our approach and also shown some of its
limitations in its present form. Nevertheless, we believe
that it establishes that the GCM performed on many-
body bases, including exact symmetries such as particle
number, parity (as is done here) but also angular momen-
tum, has strong potential for the description of nuclear
properties which remains largely to be explored.

We thank P.-G. Reinhard and G.L. Colo for providing us in-
formation on specific RPA calculations. This work has been
supported in part by the PAI-P3-043 of the Belgian Office for
Scientific Policy.
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21. S. Ćwiok, W. Nazarewicz, P.-H. Heenen, Phys. Rev. Lett
83, 1108 (1999).

22. J. Terasaki, P.-H. Heenen, P. Bonche, J. Dobaczewski,
H. Flocard, Nucl. Phys. A 593, 1 (1995).

23. T. Duguet, P. Bonche, P.-H. Heenen Nucl. Phys. A 679,
427 (2001).

24. L. Egido, private communication.
25. J. Meyer, P. Bonche, J. Dobaczewski, H. Flocard, P.-H.

Heenen, Nucl. Phys. A 533, 307 (1991).
26. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953).
27. P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen,

J. Meyer, Nucl. Phys. A 510, 466 (1990).
28. P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen,

Nucl. Phys. A 530, 149 (1991).

29. P.-H. Heenen, P. Bonche, J. Dobaczewski, H. Flocard,
Nucl. Phys. A 561, 367 (1993).

30. A. Valor, P.-H. Heenen, P. Bonche, Nucl. Phys. A 671, 145
(2000).

31. A. Valor, J.L. Egido, L.M. Robledo, Phys. Lett. B 392,
249 (1997).

32. N. Tajima, H. Flocard, P. Bonche, J.Dobaczewski, P.-H.
Heenen, Nucl. Phys. A 542, 355 (1992).

33. P.-G. Reinhard, J. Friedrich, Z. Phys. A 321, 619 (1985).
34. S. Brandenburg et al., Nucl. Phys. A 466, 29 (1987).
35. D.H. Youngblood, H.L. Clark, Y.W. Lui, Phys. Rev. Lett.

82, 691 (1999).
36. J.P. Blaizot, Phys. Rep. 64, 171 (1980).
37. J. Speth, Electric and Magnetic Giant Resonances (World

Scientific, Singapore, New Jersey, London, Hongkong,
1991).

38. J.P. Blaizot, J.F. Berger, J. Dechargé, M. Girod, Nucl.
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